Overcoming the Fundamental Limit: Combustion of a Hydrogen-Oxygen Mixture in Micro- and Nano-Bubbles

نویسندگان

  • Vitaly Svetovoy
  • Ilia Uvarov
  • Remco Sanders
  • Gijs Krijnen
چکیده

Combustion reactions quench in small volumes due to fast heat escape via the volume boundary. Nevertheless, the reaction between hydrogen and oxygen was observed in nanoand micro-bubbles. The bubbles containing a mixture of gases were produced in microsystems using electrochemical decomposition of water with a fast switching of voltage polarity. In this paper, we review our experimental results on the reaction in microand nano-bubbles and provide their physical interpretation. Experiments were performed using microsystems of different designs. The process was observed with a stroboscope and with a vibrometer. The latter was used to measure the gas concentration in the electrolyte and to monitor pressure in a reaction chamber covered with a flexible membrane. Information on the temperature was extracted from the Faraday current in the electrolyte. Since the direct observation of the combustion is complicated by the small size and short time scale of the events, special attention is paid to the signatures of the reaction. The mechanism of the reaction is not yet clear, but it is obvious that the process is surface dominated and happens without significant temperature increase.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanical Behavior of Concrete, Made with Micro-Nano Air Bubbles

Nano materials have been widely used in laboratory and industrial scales in order to improve various properties of concrete and concrete mixture. The mainstream practice of the researches in this field is to add metallic nano-particles into the concrete mixture. The present research focuses on adding Micro-Nano Air Bubbles (MNAB) into water before mixing it with aggregate and cement mixtures. I...

متن کامل

CFD Study on Hydrogen-Air Premixed Combustion in a Micro Scale Chamber

This paper reports a CFD modeling study to investigate the hydrogen-air mixture combustion in a micro scale chamber. Nine species with nineteen reversible reactions were considered in the premixed combustion model. The effect of operational and geometrical conditions including; combustor size, wall conductivity, reactant flow rates and hydrogen feed splitting on combustion stabilit...

متن کامل

The effects of added hydrogen to the premixed of methane and air in a MEMS channel

In this paper, the effect of adding hydrogen to the composition of methane and air in a micro combustor is investigated by a three-dimensional numerical method. First, the results of the current study in determining the wall temperature of the micro combustion chamber are compared with those obtained from the experimental and numerical results of the previous research. By confirming the numeric...

متن کامل

An Investigate on Power, Torque and Exhaust Gas Emission Variation: Effect of Hydroxy Gas Addition to Inlet Air of a SI Engine

Hydrogen has been known as a clean and suitable fuel to replace conventional fossil fuels. One of the common hydrogen production methods is using water electrolysis process. This method produces oxygen as well as hydrogen by ratio of 1:2. The aim of this work is to investigate the effects of inlet air enrichment by adding produced hydrogen and oxygen to an internal combustion engine. For this p...

متن کامل

A numerical study on the effects of hydrogen addition levels, wall thermal conductivity and inlet velocity on methane/air pre-mixed flame in a micro reactor

In this study, the effect of the levels of hydrogen addition to methane-air premixed flame in a micro-stepped reactor has been studied numerically. In addition, the effects of mixture velocity and walls’ thermal conductivity (Kw) on the flame’s location, temperature, and species distribution in a micro reactor were calculated using a 2D numerical laminar steady code. The results ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016